INTERNET APPENDIX

Russell Index Reconstitutions, Institutional Investors, and Corporate Social Responsibility

Simon Glossner
Catholic University of Eichstätt-Ingolstadt

October 24, 2019

Table IA1: Instrumental variable approach (incorrectly) based on sharp RD
Description: This table estimates an IV approach based on sharp RD (which uses float-adjusted June ranks). Formally, the first-stage regression of the IV approach is specified by

$$
I O_{i, t}=\alpha_{0}+\tau_{0} \mathrm{R}^{2000}{ }_{i, t}+\sum_{n} \delta_{n}\left(\operatorname{Rank}_{i, t}^{J u n}\right)^{n}+\sum_{n} \gamma_{n} \mathrm{R}_{2000}^{i, t}\left(\operatorname{Rank}_{i, t}^{J u n}\right)^{n}+v_{t}+u_{i, t}
$$

where $\mathrm{R} 2000_{i, t}$ is a dummy indicating whether firm i is a member of the Russell 2000 in year $t, \operatorname{Rank}_{i, t}^{J u n}$ is the rank of firm i during the index reconstitution of year t, v_{t} are year dummies, and $u_{i, t}$ is the error term. I construct variable Rank ${ }_{i, t}^{J u n}$ based on Russell's float-adjusted end-of-June ranks. Standard errors are clustered on the firm level. The number in parenthesis is the t-statistic of the estimate.

Interpretation: The IV approach based on sharp RD shows that firms at the top of the Russell 2000 have 12-27 percentage points higher institutional ownership than firms at the bottom of the Russell 1000 .

Dependent	Independent	(1)	(2)	(3)	(4)
	R2000	$0.120^{* * *}$	$0.177^{* * *}$	$0.226^{* * *}$	$0.265^{* * *}$
Total	(T)	(10.60)	(10.68)	(9.43)	(8.54)
institutional					
ownership	Polynomial(n)	1	2	3	4
	Observations	26629	26629	26629	26629
	(5)	(6)	(7)	(8)	
		R2000	$0.107^{* * *}$	$0.126^{* * *}$	$0.174^{* * *}$
	$(\mathrm{~T})$	(14.24)	(11.85)	(12.15)	$\left(12.315^{* * *}\right.$
Ownership by					
quasi-index					
investors	Polynomial(n)	1	2	3	4
	Observations	26629	26629	26629	26629

Table IA2: First-stage of fuzzy regression discontinuity approaches
Description: This table estimates first-stage regressions of a fuzzy RD approach specified by

$$
\operatorname{R2000}_{i, t}=\alpha_{0}+\tau_{0} \text { PredictR2000 }_{i, t}+\delta_{0} \operatorname{Rank}_{i, t}^{M a y}+\gamma_{0} \operatorname{PredictR}^{2000} 0_{i, t} \operatorname{Rank}_{i, t}^{M a y}+v_{t}+u_{i, t},
$$

where $\mathrm{R}^{2000}{ }_{i, t}$ is a dummy indicating whether firm i is a member of the Russell 2000 after the annual index reconstitution in June of year $t, \operatorname{Rank}_{i, t}^{M a y}$ is the end-of-May rank of firm i at year t, PredictR2000 $i_{i, t}$ is a dummy indicating whether $\operatorname{Rank}_{i, t}^{M a y}$ predicts membership in the Russell 2000, v_{t} are year dummies, and $u_{i, t}$ is the error term. Variable $\operatorname{Rank}_{i, t}^{\text {May }}$ is centered around the cutoff. Panel A uses data from Compustat and CRSP to construct the May ranks (see Appendix A for details), and Panel B uses data only from CRSP to construct the May ranks. F-statistic indicates the instrument strength. The regressions are estimated only on those observations that lie within a bandwidth close to the threshold. Standard errors are clustered on the firm level. The number in parenthesis is the t-statistic of the estimate.

Interpretation: CRSP/Compustat May rankings are a better predictor of actual index assignment than CRSP May rankings.

Panel A: May ranks are constructed with data from CRSP and Compustat

Dependent:	R 2000			
	(1)	(2)	(3)	(4)
PredictR2000	$0.721^{* * *}$	$0.834^{* * *}$	$0.875^{* * *}$	$0.901^{* * *}$
$(\mathrm{~T})$	(24.82)	(47.70)	(69.21)	(89.48)
Bandwidth	100	200	300	400
Observations	1794	3567	5341	7117
F-Statistic	668.2	1625.2	3044.5	4612.1
Adj. R^{2}	0.83	0.89	0.92	0.94

Panel B: May ranks are constructed with data only from CRSP

Dependent:	R 2000			
	(1)	(2)	(3)	(4)
PredictR2000	$-0.129^{* * *}$	$0.243^{* * *}$	$0.433^{* * *}$	$0.536^{* * *}$
$(\mathrm{~T})$	(-4.30)	(10.09)	(20.98)	(29.58)
Bandwidth	100	200	300	400
Observations	1790	3569	5343	7117
F-Statistic	298.0	317.7	519.5	686.2
Adj. R^{2}	0.55	0.66	0.70	0.75

Table IA3: Instrumental variable approach by Appel, Gormley, and Keim (2016)
Description: This table estimates an IV approach by Appel, Gormley, and Keim (2016). The first-stage regression of this approach is specified by

$$
I O_{i, t}=\alpha_{0}+\tau_{0} \mathrm{R} 2000_{i, t}+\sum_{n=1}^{3} l_{n}\left(\operatorname{Mktcap}_{i, t}\right)^{n}+\rho_{0} \mathrm{Float}_{i, t}+v_{t}+u_{i, t},
$$

where $\mathrm{R}^{2} 2000_{i, t}$ is a dummy indicating whether firm i is a member of the Russell 2000 index at time t, Mktcap $_{i, t}$ is the logarithm of the May market cap of firm i in year t, Float $i_{i, t}$ is the logarithm of the float-adjusted June market cap in year t, v_{t} are year dummies, and $u_{i, t}$ is the error term. Panel A presents the original approach by Appel, Gormley, and Keim (2016), which calculates variable Mktcap ${ }_{i, t}$ by using data from CRSP and selects the bandwidth based on float-adjusted June ranks. Panel B presents a modified version, which selects the bandwidth based on unadjusted May market caps. Panel C shows a modified version, which selects the bandwidth based on May market caps and calculates variable Mktcap ${ }_{i, t}$ by multiplying stock prices from CRSP by outstanding shares from Compustat. Standard errors are clustered on the firm level. The number in parenthesis is the t-statistic of the estimate.

Interpretation: This IV approach shows a lower difference in quasi-index investors between the firms close to the threshold when using the modified approaches.

Panel A: Original IV approach by Appel, Gormley, and Keim (2016)

Dependent:	Ownership of quasi-index investors				
	(1)	(2)	(3)	(4)	
R2000	0.011	$0.017^{* *}$	$0.023^{* * *}$	$0.027^{* * *}$	
(T)	(0.93)	(2.16)	(3.16)	(3.73)	
Bandwidth	100	200	300	400	
Observations	1784	3563	5332	7105	

Panel B: Modified IV approach (CRSP mcaps, May bandwidth)

Dependent:	Ownership of quasi-index investors			
	(1)	(2)	(3)	(4)
R2000	0.004	0.010	0.016**	0.018**
(T)	(0.35)	(1.05)	(2.03)	(2.28)
Bandwidth	100	200	300	400
Observations	1790	3569	5343	7117

Panel C: Modified IV approach (CRSP/Compustat mcaps, May bandwidth)

Dependent:	Ownership of quasi-index investors			
	(1)	(2)	(3)	(4)
R2000	0.007	0.012	0.016^{*}	$0.019^{* *}$
(T)	(0.50)	(1.12)	(1.81)	(2.37)
Bandwidth	100	200	300	400
Observations	1794	3567	5341	7117

Table IA4: Replication of Rubio and Vazquez (2018)
Description: This table replicates the results by Rubio and Vazquez (2018). It estimates an IV approach that is specified by

$$
\begin{gathered}
I O_{i, t}=\alpha_{0}+\tau_{0} \mathrm{R} 2000_{i, t}+\sum_{n} l_{n}\left(\operatorname{Mktcap}_{i, t}\right)^{n}+\rho_{0} \text { Float }_{i, t}+v_{t}+u_{i, t} \\
Y_{i, t+1}=\alpha_{1}+\tau_{1} \widehat{I O_{i, t}}+\sum_{n} \lambda_{n}\left(\operatorname{Mktcap}_{i, t}\right)^{n}+\rho_{1} \text { Float }_{i, t}+v_{t+1}+\epsilon_{i, t+1}
\end{gathered}
$$

where $I O_{i, t}$ is ownership of institutional investors, $R 2000_{i, t}$ is a dummy indicating whether firm i is a member of the Russell 2000 index at time t, Mktcap $_{i, t}$ is the logarithm of the unadjusted end-of-May CRSP market capitalization of firm i in year t, Float ${ }_{i, t}$ is the logarithm of the float-adjusted end-of-June market capitalization of firm i in year t, v_{t} are year dummies, and $u_{i, t}$ and $\epsilon_{i, t+1}$ are the error terms. Panel A estimates the first-stage regressions of the IV approach. Panel B shows the second-stage regressions. The regressions are estimated only on those observations that lie within a bandwidth close to the threshold (based on float-adjusted end-of-June ranks). Standard errors are clustered on the firm level. The number in parenthesis is the t-statistic of the estimate.

Interpretation: This replication shows that institutional investors have no significant effect on CSR, contrary to the findings by Rubio and Vazquez (2018).

Panel A: First-stage regressions

Dependent:	Institutional ownership		
	(1)	(2)	(3)
R2000	0.038	$0.068^{* * *}$	$0.066^{* * *}$
$(\mathrm{~T})$	(1.22)	(2.69)	(2.98)
Polynomial(n)	2	2	2
Bandwidth	300	500	700
Observations	903	1544	2200

Panel B: Second-stage regressions

Dependent	Independent	(1)	(2)	(3)
	$\widehat{I O}$	-12.981	-7.559	-2.952
Strengths-only	(T)	(-0.88)	(-1.29)	(-0.96)
CSR score	Polynomial(n)	2		
	Bandwidth	300	500	700
	Observations	1616	2703	3790
		(4)	(5)	(6)
	$\widehat{I O}$	-6.208	-6.853	-5.318
Concerns-only	(T)	(-0.80)	(-1.32)	(-1.39)
CSR score				
	Polynomial(n)	2	2	2
	Bandwidth	300	500	700
	Observations	1616	2703	3790

Table IA5: Replication of Chen, Dong, and Lin (2018)
Description: This table replicates the results by Chen, Dong, and Lin (2018). It estimates an IV approach that is specified by

$$
\begin{aligned}
I O_{i, t} & =\alpha_{0}+\tau_{0} \mathrm{R} 2000_{i, t}+\sum_{n} \delta_{n}\left(\operatorname{Rank}_{i, t}\right)^{n}+\sum_{n} \gamma_{n} \mathrm{R} 2000_{i, t}\left(\operatorname{Rank}_{i, t}\right)^{n}+\xi_{0} \text { FloatAdj }_{i, t}+\beta_{0} X_{i, t}+\eta_{j}+v_{t}+u_{i, t} \\
Y_{i, t} & =\alpha_{1}+\tau_{1} \widehat{I O_{i, t}}+\sum_{n} \lambda_{n}\left(\operatorname{Rank}_{i, t}\right)^{n}+\sum_{n} l_{n}{\mathrm{R} 2000_{i, t}\left(\operatorname{Rank}_{i, t}\right)^{n}+\xi_{1} \operatorname{FloatAdj}_{i, t}+\beta_{1} X_{i, t}+\eta_{j}+v_{t}+\epsilon_{i, t}}^{\text {l }}
\end{aligned}
$$

where $I O_{i, t}$ is ownership of institutional investors, $Y_{i, t}$ is the net CSR score, R2000 ${ }_{i, t}$ is a dummy indicating whether firm i is a member of the Russell 2000 in year t, $\operatorname{Rank}_{i, t}$ is the rank of firm i during the index reconstitution of year $t, X_{i, t}$ is a vector of control variables (size, leverage, return on assets, market-to-book, cash holdings, advertising, R\&D intensity, sales growth, dividends), η_{j} are industry (sic2) dummies, v_{t} are year dummies, and $u_{i, t}$ and $\epsilon_{i, t}$ are the error terms. Variable FloatAdj $j_{i, t}$ is the difference between the rank implied by the end-of-May market capitalization and the actual rank assigned by Russell in June. Both panels show the second-stage regressions. Panel A shows the original approach, which constructs rank Rank $_{i, t}$ based on Russell's float-adjusted end-of-June ranks. Panel B shows the modified approach, which constructs rank Rank int $^{\text {based on the unadjusted end-of-May ranks (see Appendix A). Standard errors are }}$ clustered on the firm level. The number in parenthesis is the t-statistic of the estimate.

Interpretation: This replication shows that institutional investors have no significant effect on CSR when using unadjusted May rankings in the approach.

Panel A: Original approach (using float-adjusted June ranks)

Dependent:	Net CSR score		
	(1)	(2)	(3)
$\widehat{I O}$	$4.217^{* * *}$	$2.750^{* *}$	0.739
$(\mathrm{~T})$	(2.61)	(2.25)	(0.67)
Polynomial(n)	3	3	3
Bandwidth	50	150	250
Observations	474	1517	2573

Panel B: Modified approach (using unadjusted May ranks)

Dependent:	Net CSR score		
	(1)	(2)	(3)
$\widehat{I O}$	-1.357	-0.325	0.616
$(\mathrm{~T})$	(-0.44)	(-0.25)	(0.49)
Polynomial(n)	3	3	3
Bandwidth	50	150	250
Observations	483	1536	2601

Table IA6: Replication of Hou and Zhang (2017)
Description: This table replicates the results by Hou and Zhang (2017). It estimates an IV approach that is specified by

$$
\begin{gathered}
I O_{i, t}=\alpha_{0}+\tau_{0} \mathrm{R} 2000_{i, t}+\sum_{n} l_{n}\left(\operatorname{Mktcap}_{i, t}\right)^{n}+\rho_{0} \text { Float }_{i, t}+\beta_{0} X_{i, t}+\eta_{j}+v_{t}+u_{i, t} \\
Y_{i, t+1}=\alpha_{1}+\tau_{1} \widehat{I O_{i, t}}+\sum_{n} \lambda_{n}\left(\operatorname{Mktcap}_{i, t}\right)^{n}+\rho_{1} \text { Float }_{i, t}+\beta_{1} X_{i, t}+\eta_{j}+v_{t+1}+\epsilon_{i, t+1}
\end{gathered}
$$

where $Y_{i, t+1}$ is the net CSR score, $I O_{i, t}$ is ownership of passive funds in percentage, $\mathrm{R} 2000_{i, t}$ is a dummy indicating whether firm i is a member of the Russell 2000 index at time t, Mktcap ${ }_{i, t}$ is the logarithm of the end-of-May CRSP market capitalization of firm i in year t, Float ${ }_{i, t}$ is the logarithm of the float-adjusted end-of-June market capitalization of firm i in year $t, X_{i, t}$ is a vector of control variables (total assets, return on assets, market-to-book, tangibility, cash holdings, and dividends), η_{j} are industry (sic2) dummies, v_{t} are year dummies, and $u_{i, t}$ and $\epsilon_{i, t+1}$ are the error terms. Both panels show the second-stage regressions. Panel A shows the original approach, which uses CRSP May market caps and selects the bandwidth based on float-adjusted end-of-June rankings. Panel B shows the modified approach, which uses CRSP/Compustat May market caps and selects the bandwidth based on unadjusted end-of-May ranks. Standard errors are clustered on the firm level. The number in parenthesis is the t-statistic of the estimate.

Interpretation: This replication shows that passive mutual funds have no significant effect on CSR when using the modified approach instead of the original approach.

Panel A: Original approach (CRSP mcaps, June bandwidth)

Dependent:	Net CSR score		
	(1)	(2)	(3)
$\widehat{I O}$	$-0.240^{* *}$	$-0.248^{* *}$	$-0.253^{* *}$
$(\mathrm{~T})$	(-2.38)	(-2.28)	(-2.13)
Polynomial(n)	1	2	3
Bandwidth	250	250	250
Observations	1677	1677	1677

Panel B: Modified approach (CRSP/Compustat mcaps, May bandwidth)

Dependent:	Net CSR score		
	(1)	(2)	(3)
$\widehat{I O}$	-0.430	-0.327	-0.258
$(\mathrm{~T})$	(-1.50)	(-1.64)	(-1.43)
Polynomial(n)	3	3	3
Bandwidth	150	250	350
Observations	1013	1692	2369

Simulation R Code

library (AER)
library (Runuran)
library (lmtest)
RussellSim $=$ function (noiseFunction, noisePar, outLoopN) $\{$

```
\# preallocate output and run loop
out_c \(=\) matrix (NA, nrow=outLoopN, \(\mathbf{n c o l}=6\) )
out_t \(=\) matrix (NA, nrow=outLoopN, \(\quad \mathbf{n c o l}=6\) )
for ( j in 1:outLoopN) \{
\# create dataframe with mcaps, ranks, and index labels
data \(=\) data.frame \((\mathrm{n}=1: 3000)\)
data \(\$\) mcaps \(=\operatorname{sort}(\operatorname{rlnorm}(3000, \operatorname{meanlog}=7.0, \operatorname{sdlog}=1.4)\), decreasing=TRUE)
data \(\$\) index \(=\mathbf{c}(\operatorname{rep}(1000,1000), \operatorname{rep}(2000,2000))\)
data \(\$ 2000=\) ifelse \((\) data \(\$\) index \(=2000,1,0)\)
data\$rank \(=\operatorname{rank}(-\) data \(\$\) mcaps \()-1000\)
\# calculate free float and float-adjusted June ranks
data \(\$\) float \(=\) data \(\$\) mcaps \(*(1-\operatorname{urexp}(3000\), rate \(=3.5, \quad u b=1))\)
data \([\) data \(\$\) index \(==1000, ~ " a d j r a n k "]=\operatorname{rank}(-\) data[data\$index=\(=1000, ~ " f l o a t "])-1000\)
data \([\) data \(\$\) index \(==2000, ~ " a d j r a n k "]=\operatorname{rank}(-\) data \([\) data\$index \(==2000, ~ " f l o a t "])\)
\# calculate institutional ownership of period \(t\)
data\$io_error \(=\operatorname{rnorm}(3000,0.35,0.23)\)
data \(\$\) io \(=(-0.16) * \log (\) data \(\$\) mcaps \()+0.20 * \log (\) data \(\$\) float \()+\) data \(\$\) io_error
data \(\$\) io \(=\) replace (data \(\$\) io, data \(\$\) io \(>1,1)\)
data \(\$\) io \(=\) replace \((\) data \(\$\) io, \(\operatorname{data} \$\) io \(<0,0)\)
\# calculate mcaps and ranks of period \(t+1\) (only for switcher approach)
\(\mathbf{c}=\operatorname{rlnorm}(3000,0,0.25)\)
data \(\$\) mcaps_t \(1=\) data \(\$\) mcaps \(* \mathbf{c}\)
data\$rank_t1 \(=\operatorname{rank}(-\) data \(\$\) mcaps_t1) -1000
data \(\$\) index_t1 \(=\) ifelse (data\$rank_t1 \(<=0,1000,2000\) )
data \(\$\) toR2000 \(=\) ifelse (data\$index \(=1000 \&\) data \(\$\) index_t1 \(=2000,1,0\) )
data \(\$\) toR1000 \(=\) ifelse \((\) data \(\$\) index \(=2000 \&\) data \(\$\) index_t1 \(=1000,1,0)\)
\# calculate institutional ownership of \(t+1\) (only for switcher approach)
data \(\$\) io_t1 \(=(-0.16) * \log (\) data \(\$\) mcaps* \(\mathbf{c})+0.20 * \log \left(\right.\) data \({ }^{\text {float } * \mathbf{c})+}\)
        \(0.9 *\) data \(\$\) io_error \(+0.1 * \operatorname{rnorm}(3000,0.35,0.23)\)
data \(\$\) io_t \(1=\) replace \(\left(\right.\) data \(\$\) io_t \(\left.1, ~ d a t a \$ i o \_t 1>1,1\right)\)
data \(\$\) io_t \(1=\) replace \((\) data \(\$\) io__t 1, data \(\$\) io_t \(1<0,0)\)
\# create noisy CRSP market caps
if (noiseFunction = "uniform") \{
        data \(\$\) crsp \(=\) data\$mcaps \(\quad\) runif \((3000, \min =1-\) noisePar, \(\boldsymbol{m a x}=1+\) noisePar \()\)
        data \(\$\) crsp__t \(=\) data\$mcaps_t1 * runif \((3000, \boldsymbol{m i n}=1-\) noisePar, \(\boldsymbol{m a x}=1+\) noisePar \()\)
```

```
} else if (noiseFunction = "normal") {
    data$crsp = data$mcaps * rnorm(3000, 1, noisePar)
    data$crsp_t1 = data$mcaps_t1 * rnorm(3000, 1, noisePar)
} else if (noiseFunction = "triangle") {
    data$crsp = data$mcaps * urtriang(3000, a=1-noisePar, b=1+noisePar, m=1)
    data$crsp__t1 = data$mcaps_t1 * urtriang(3000, a=1-noisePar, b=1+noisePar, m=1)
} else if (noiseFunction = "laplace") {
    data$crsp = data$mcaps * urlaplace (3000, location=1, scale=noisePar, lb=0.1)
    data$crsp_t1 = data$mcaps_t1 * urlaplace (3000, location=1, scale=noisePar, lb=0.1)
}
# run fuzzy RD approach
data$crsprank = rank(-data$crsp) - 1000
data$r2000treat = ifelse (data$crsprank > 0, 1, 0)
data$crsprank_r2000 = data$crsprank * data$r2000
data$crsprank_r2000treat = data$crsprank * data$r2000treat
mod4stage1 = lm(r2000 ~ crsprank + r2000treat + crsprank_r2000treat,
    data=data, subset=data$crsprank %in% seq(-200,+200))
coeftest_mod4stage1 = coeftest (mod4stage1)
out__c[j, 1] = coeftest__mod4stage1[3,1]
out_t [j, 1] = coeftest__mod4stage1[3,3]
mod4 = ivreg(io ~ crsprank + r2000 + crsprank_r2000 |
    crsprank + r2000treat + crsprank_r2000treat,
    data=data, subset=data$crsprank %in% seq(-200,+200))
coeftest__mod4 = coeftest (mod}4
out_c_cj, 2] = coeftest_mod4[3,1]
out__t[j, 2] = coeftest_mod4[3,3]
# run IV approach by AGK 2016 with May bandwidth
mod}3\textrm{b}=\operatorname{lm}(\textrm{io ~ r 2000+log}(\textrm{crsp})+\mathbf{I}(\operatorname{log}(\operatorname{crsp}\mp@subsup{)}{}{\wedge}2)+\mathbf{I}(\boldsymbol{log}(\operatorname{crsp}\mp@subsup{)}{}{\wedge}3)+\boldsymbol{log}(\mathrm{ float ),
    data=data, subset=data$crsprank %in% seq(-200,+200))
coeftest__mod}3b=coeftest (mod3b)
out_cc[j, 3] = coeftest__mod3b[2,1]
out_t[j, 3] = coeftest__mod3b[2,3]
# run IV approach by AGK 2016 with June bandwidth
mod3c}=\operatorname{lm}(\textrm{io ~ r 2000+log}(\textrm{crsp})+\mathbf{I}(\boldsymbol{log}(\textrm{crsp}\mp@subsup{)}{}{\wedge}2)+\mathbf{I}(\boldsymbol{log}(\operatorname{crsp}\mp@subsup{)}{}{\wedge}3)+\boldsymbol{log}(\mathrm{ float })
    data=data, subset=data$adjrank %in% seq}(-200,+200)
coeftest__mod3c = coeftest (mod3c)
out_c cj, 4] = coeftest__mod3c[2,1]
out_t[j, 4] = coeftest__mod3c[2,3]
# run IV based on index switchers
data$crsprank_t1 = rank(-data$crsp__t1) - 1000
data$crsprank_diff = data$crsprank_t1 - data$crsprank
data$io_change = data$io__t1 - data$io
mod5 = lm(io__change ~ toR1000 + toR2000 + crsprank__diff, data=data)
```

```
        coeftest_mod5 = coeftest (mod}5
        out_c[j, 5] = coeftest_mod5[2,1]
        out_t[j, 5] = coeftest_mod5[2,3]
        out__c[j, 6] = coeftest_mod5[3,1]
        out__t[j, 6] = coeftest_mod5[3,3]
    }
    # return output
    coef = apply(out__c, 2, function(x) mean(x))
    ols__t = apply(out_t, 2, function(x) mean(x))
    ols__sig = apply(out_t, 2, function(x) sum(abs(x)>=1.64)/length(x))
    output = rbind(coef, ols__t, ols__sig)
    return(output)
}
outLoopN = 100000
```

```
normal_mod1 = RussellSim("normal ", 0.05, outLoopN)
```

normal_mod1 = RussellSim("normal ", 0.05, outLoopN)
normal_mod2 = RussellSim("normal ", 0.09, outLoopN)
normal_mod2 = RussellSim("normal ", 0.09, outLoopN)
normal_mod3 = RussellSim(" normal", 0.13, outLoopN)
normal_mod3 = RussellSim(" normal", 0.13, outLoopN)
normal_mod4 = RussellSim("normal", 0.17, outLoopN)
normal_mod4 = RussellSim("normal", 0.17, outLoopN)
uniform_mod1 = RussellSim("uniform" , 0.08, outLoopN)
uniform_mod1 = RussellSim("uniform" , 0.08, outLoopN)
uniform_mod2 = RussellSim("uniform" , 0.13, outLoopN)
uniform_mod2 = RussellSim("uniform" , 0.13, outLoopN)
uniform_mod3 = RussellSim("uniform" , 0.18, outLoopN)
uniform_mod3 = RussellSim("uniform" , 0.18, outLoopN)
uniform_mod4 = RussellSim("uniform" , 0.23, outLoopN)
uniform_mod4 = RussellSim("uniform" , 0.23, outLoopN)
triangle_mod1 = RussellSim("triangle", 0.12, outLoopN)
triangle_mod1 = RussellSim("triangle", 0.12, outLoopN)
triangle_mod2 = RussellSim("triangle", 0.22, outLoopN)
triangle_mod2 = RussellSim("triangle", 0.22, outLoopN)
triangle__mod3 = RussellSim("triangle", 0.32, outLoopN)
triangle__mod3 = RussellSim("triangle", 0.32, outLoopN)
laplace_mod1 = RussellSim("laplace", 0.04, outLoopN)
laplace_mod1 = RussellSim("laplace", 0.04, outLoopN)
laplace_mod2 = RussellSim("laplace", 0.08, outLoopN)
laplace_mod2 = RussellSim("laplace", 0.08, outLoopN)
laplace_mod3 = RussellSim("laplace", 0.12, outLoopN)

```
laplace_mod3 = RussellSim("laplace", 0.12, outLoopN)
```

